
Searchable Encryption in Apache Cassandra

Tim Waage, Ramaninder Singh Jhajj, Lena Wiese

Institute of Computer Science
University of Göttingen
Goldschmidtstrasse 7

37077 Göttingen
Germany

{tim.waage,lena.wiese}@uni-goettingen.de, r.jhajj@stud.uni-goettingen.de

Abstract. In today’s cloud computing applications it is common prac-
tice for clients to outsource their data to cloud storage providers. That
data may contain sensitive information, which the client wishes to pro-
tect against this untrustworthy environment. Confidentiality can be pre-
served by the use of encryption. Unfortunately that makes it difficult to
perform efficient searches.
There are a couple of different schemes proposed in order to overcome
this issue, but only very few of them have been implemented and tested
with database servers yet. While traditional databases usually rely on
the SQL model, a lot of alternative approaches, commonly referred to as
NoSQL (short for “Not only SQL”) databases, occurred in the last years
to meet the new requirements of the so called “Web 2.0”, especially in
terms of availability and partition tolerance. In this paper we implement
three different approaches for searching over encrypted data in the pop-
ular NoSQL database Apache Cassandra (offered by many cloud storage
providers) and run tests in a distributed environment. Furthermore we
quantify their performances and explore options for optimization.

Keywords: Searchable Encryption, Benchmarking, Apache Cassandra

1 Introduction

Industry is moving towards distributed data storage due to the increased amount
of data being produced every day and the requirements of Web 2.0 services, need-
ing high availability, consistency and partition tolerance [1] as well as good prop-
erties concerning scalability on commodity hardware. NoSQL databases running
in distributed cloud environments were designed to meet those requirements.
They provide ease of use and flexibility at low costs, without needing the cus-
tomer to worry about the consumption of resources for storing and sharing data.
Furthermore cloud service providers often provide such storage space which can
be booked flexibly on demand.

However, outsourcing sensitive data to third party storage providers has al-
ways been a security risk, in the private sector (e.g. sharing of photos or health



information, messaging) as well as in the business sector (e.g. classified docu-
ments or confidential mailing). Not only adversaries with physical access to data
servers are potentially dangerous, (honest but) curious or malicious database ad-
ministrators of hosting providers also may snoop on sensitive data and thereby
pose a thread. NoSQL databases usually do not provide any mechanisms to en-
sure confidentiality of the data items they are storing. Thus this lack of security
features often impedes a wider use of cloud storage.

Encryption is always a handy countermeasure in such untrustworthy environ-
ments. It can ensure confidentiality of the externally stored data records against
any illegitimate read accesses, but it is usually connected to some limitations
concerning the interacting possibilities with the encrypted data, in particular
when it comes to searching. Several symmetric searchable encryption schemes
have been proposed to overcome this issue [2], but to our knowledge none of
them have been tested with existing cloud database technologies. Thus in this
paper we make the following contributions:

– We implement three schemes for searchable encryption [3–5].
– We quantify the performance of all schemes in a small distributed environ-

ment consisting of two nodes.
– Furthermore we evaluate their usability in practice and discuss performance

optimizations.

2 Apache Cassandra

Apache Cassandra [6] can be considered as key-value store, as well as (wide)
column family store. Its data model was designed to represent loosely structured
data items like they are typical for the Web 2.0. It is currently the most popular
database in its category1. Based on a strictly symmetric peer-to-peer concept
Cassandra uses the Gossip protocol for coordination purposes in a distributed
installation. It makes use of the local file system and runs in a single Java process
per node. Concerning the CAP Theorem [7, 1] Cassandra offers availability and
partition-tolerance.

In contrast to most traditional relational SQL-based systems Cassandra does
not provide user, role or access rights management. Frontends have to offer this
functionality, if desired (for example, the cloud storage interface). Storing the
data in an encrypted form can provide a much higher level of security, but
Cassandra does not provide any native mechanisms for doing so.

3 The searchable encryption schemes

This section gives a brief overview of the different ideas of the searchable en-
cryption schemes that we used: the CGK scheme [4] proposed by Curtmola et.

1 SolidIT: DB-Engines Ranking. http://db-engines.com/en/ranking, accessed
13/07/2015



al, the HK scheme [5] proposed by Hahn and Kerschbaum as well as the SWP
Scheme [3] proposed by Song et. al. As the amount of space for this article is
limited we refer the reader to the original papers for more detailed information
on how the schemes work. For security definitions, see [2].

3.1 CGK [4] - Index per Keyword

The approach of Curtmola et al. is very promising in terms of search time.
It relies on an index consisting of an array A which stores lists of document
identifiers from document set D containing unique words and a lookup table T
to identify the first element in A for a particular word being searched. The index
is created per unique word from the document set D instead of per document.
The CGK scheme2 is the first of its kind to achieve optimal search time and
the index generated is linear in the number of distinct words per document.
Due to the way data is indexed, updates are expensive which makes this scheme
more suitable for ‘write once’ databases. The non-adaptive version provides IND-
CKA1 (indistinguishable under chosen keyword attacks) security, the adaptive
version IND-CKA2.

3.2 HK [5] - Index per Document

The also IND-CKA2 secure HK algorithm works with two indices: γf and γw.
The main idea is to store all unique words per document (in contrast to CGK) in
the forward index γf using a special encrypted form similar to SWP. In addition
γw is an inverted index storing the outcome of previous searches for providing
future results in constant time. The encryption process needs as much iterations
as there are unique words per document. Thus it can be very fast depending on
the given dataset. On the other hand that means it can by design only deliver
information on whether a searchword occurs in a document or not.

3.3 SWP [3] - Sequential Scan

The sequential scan based SWP algorithm3 is almost the only choice when it is
desired to avoid having an index (e.g. for practical reasons) [2]. The basic idea is
to encrypt words of a fixed size n and embed a hash value within the ciphertext
using a specific form. During search the hash value gets extracted again. If the
value is of that special form there is a match. SWP does not require any sort
of state information, thus it is instantaneously ready to encrypt or search and
easy to implement for many scenarios. In contrast to most index based schemes
it also delivers information about the exact number (and positions) of matches
in documents. On the downside as being typical for linear scan algorithms, en-
cryptions and searches take linear time and thus potentially very long for large
datasets. SWP is IND-CPA (indistinguishable under chosen plaintext attacks)
secure.
2 Whenever we refer to the CGK Algorithm in this paper, we mean its “non-adaptive”

version.
3 Whenever we refer to the SWP Algorithm in this paper, we mean its “final scheme”.



4 Implementation

We implemented all three schemes in Java 8. Concerning the necessary crypto-
graphic primitives we used the implementations of two different crypto providers:
the Java Cryptography Extension (JCE) as well as the Legion of Bouncy Cas-
tle package (BC)4. In case both providers offered the desired functionality, we
always chose the one that performed faster. In order to connect to Apache Cas-
sandra we used the Java Driver 2.1 in combination with the current version 3 of
the Cassandra Query Language (CQL).

5 Benchmarks

We employ the popular scenario of using searchable encryption for data in a
mailbox. We use a subset of the TREC 2005 Spam Track Public Corpus5. We
assume average mailbox sizes of 1,000 mails up to 10,000 mails. Hence, we start
our measurements with the first 1,000 mails of the corpus and increase that
number up to 10,000 mails to see how the schemes and database scale. Thereby
the number of plaintext words increases from roughly 700,000 to over 7 million
with around 40% of the words being unique in the sense of the HK scheme. Note
that every word in a mail counts, even words like ”a”, ”the”, ”in” and so on.
That means a search is possible for every word, too.

Cassandra is a key-value store, which means the mail documents have to be
mapped somehow to a key-value format. We do that as follows. All the mails are
written into one table of one keyspace. Thereby the file path of a mail within
the data set is used as unique key and the encrypted mail content as its value.
Of course more sophisticated structures would be possible, e.g. splitting up the
mails into sender, receiver, body and so on, then use appropriate extra keys.
However for the sake of simplicity we use this basic format, since there is no
reason to expect doing it otherwise would have a serious impact on the results.

In our experimental setup the client connects to a distributed Cassandra
Cluster consisting of two nodes, each equipped with a Intel Core i7 3770 CPU
(@ 3.4GHz) and 16 GB RAM, running Ubuntu 14.04 LTS and Apache Cassandra
2.1.4. All measurements include the time caused by the required network traffic.

5.1 Encrypting

In our first test we measure the time taken by the encryption process, which also
includes the time needed for outputting the results (encrypted files itself as well
as lookup tables, indices etc. where necessary) to the database.

As can be seen in figure 1 the time needed for encryption grows linearly
in all schemes. The HK scheme is the fastest with the SWP scheme being not
significantly slower. Both schemes beat the CGK scheme roughly by a factor of

4 The Legion of the Bouncy Castle. http://bouncycastle.org, accessed 13/07/2015
5 Available at http://plg.uwaterloo.ca/~gvcormac/trecspamtrack05, accessed

13/07/2015



0

50

100

150

200

250

300

350

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ti
m

e
[s

]

number of mails

SWP
CGK

HK

Fig. 1. Time needed for encryption with increasing data set size

4.5. Its creation of the array A of linked lists is much more complex than the
encryption steps of the other schemes. Thus the SWP and HK schemes manage
to encrypt between 95.000 and 130.000 words per second, the CGK algorithm
reaches only circa 23.000 words per second, which can still be considered feasible
in practice.

5.2 Searching

In our second test we measure the time taken by the search process for one single
word, since all three schemes do not provide a better way than using a trivial
“AND”-combination for multiple words. In order to allow a fairer comparison
we slightly modified the SWP scheme by allowing to abort the search within a
document as soon as the first match occurs and continue with the next document.
Thus it delivers the same information as the other schemes, namely whether a
document contains the search word or not.

Figure 2 presents the results. The high encryption effort of the CGK scheme
pays off in sublinear search time (0.13 seconds when searching 10.000 mails). Due
to its index γw only the HK scheme can be faster (constant search time), but
only if searching for the same word again (HK2). It performs orders of magnitude
worse when searching a word for the first time (HK1). Then it is almost as slow
as the SWP scheme. Note that the SWP scheme as slowest one in our test still
manages to search over half a million words per second.

6 Options for Optimization

During our tests we noticed that all schemes leave room for optimizations in
practice, which we describe briefly.

The CGK scheme creates an array A in which it stores a list of document
identifiers for each distinct word. While creating the index, if the insert command



0

2

4

6

8

10

12

14

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ti
m

e
[s

]

number of mails

SWP
CGK
HK1
HK2

Fig. 2. Time needed for searching with increasing data set size

is executed separately for each node from the number of lists, this results in a
significant performance hit in terms of time taken to build the index. In order to
optimize this, we used bulk insertions of the nodes into the database to reduce the
number of interactions with the servers. For our data set we found the optimal
value to be 500 nodes to be inserted at a time, which results in almost 65%
improvement compared to single insertions.

The HK scheme barely allows performance optimizations in terms of speed,
like the previous schemes do. A potential problem in practice rather is the index
size of γf . As it can become quite large, one solution to prevent it from grow-
ing too fast is reducing the output length of the used pseudo random number
generator (in the original work referred to as G). That causes the encrypted rep-
resentations stored in γf to be smaller without being a security issue. In doing
so we achieved up to 20% less disk space consumption for γf .

As mentioned earlier the SWP scheme uses words of a fixed length n, achieved
by splitting and/or padding the original plaintext words. As the algorithm needs
as much iterations as there are words to encrypt, a large n improves the overall
performance (less iterations needed), while a small n can save disk space (less
padding needed). For our individual data set we found the optimal value to be
n ≥ 8, which was 35% faster compared to n = 4.

7 Related Work

Since the presentation of the SWP [3] scheme for sequential scan on encrypted
data, numerous variations have been proposed. A recent survey [2] provides an
excellent source for comparing the different schemes. The main differentiation
is between symmetric and asymmetric primitives used. Asymmetric searchable
encryption (public key encryption with keyword search or short “PEKS”) is
commonly used in a setting where multiple users can write the encrypted data



by using the public key while search can be done by a single reader having the
private key. Yet, that is more inefficient than the symmetric variants.

The sequential scan introducing SWP scheme has also been applied as a
search function over relational data in CryptDB [8]. Most of the subsequent
schemes follow an index-based approach (besides the tested CGK and HK scheme
e.g. [9–11]), because it proved to be efficient in particular for large data sets al-
though the index size might become too large to be stored in memory [12] ([12]
also presents practical experiments and benchmarks on searchable encryption on
relational databases). However, relying on an index is not always possible. Build-
ing and maintaining indices is costly, especially if the dataset is very dynamic.
Indices also require some sort of appropriate keyword assignment.

8 Conclusion and Future Work

We put three algorithms for searchable encryption into practice, namely the
index-per-keyword based CGK scheme, the index-per-document based HK scheme
the and the sequential scan based SWP scheme. We implemented them in Java
and used Apache Cassandra as underlying database. We pointed out strengths
and weaknesses in practical environments and quantified their performance in a
distributed environment. Furthermore we discussed optimization strategies.

The CGK scheme is not as fast as the others when encrypting with roughly
23,000 words per second. With HK encrypting up to 95,000 and SWP encrypting
even up to 130,000 words per second, it is 4–5 times slower. Still the results
indicate that a practical usage of all schemes in real world applications seems
feasible. The same applies for searching, where the SWP scheme processes up to
530,000 and the HK scheme up to 660,000. The expensive encryption procedure
of the CGK Scheme pays off in the search process, in which it is 8–10 times
faster than the others.

Future work can extend these results in various ways. On the one hand there
is the need to support other functionality required by database queries. There
are approaches for the search of multiple keywords at the same time, but with
the effort of additional data structures [13, 14]. Schemes for order preserving en-
cryption like [15, 16] can be used for range scans as well as for database internals
like managing timestamps and sorting row keys. Thereby as much cryptographic
functionality as possible should be done using Cassandras user defined functions
to make sure encryption can be used in environments with no other components
(e.g. like front ends), too. However for some tasks (e.g. query rewriting) a proxy
client between the application and the database is inevitable. On the other hand
tests with larger datasets in much larger clusters are required. Therefore we
intend to run tests on popular cloud computing platforms like Google Cloud
Platform or Amazon EC2, which provide the functionality for deploying Apache
Cassandra and other NoSQL databases.



9 Acknowledgement

This work was partially funded by the DFG under grant number WI 4086/2-1.

References

1. Brewer, E.: A certain freedom: thoughts on the CAP theorem. In: Proceedings of
the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed comput-
ing, ACM (2010) 335–335

2. Bösch, C., Hartel, P., Jonker, W., Peter, A.: A survey of provably secure searchable
encryption. ACM Computing Surveys (CSUR) 47(2) (2014) 18

3. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Security and Privacy, 2000. S&P 2000. Proceedings. 2000 IEEE Sympo-
sium on, IEEE (2000) 44–55

4. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. In: Proceedings of the 13th
ACM conference on Computer and communications security, ACM (2006) 79–88

5. Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient up-
dates. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, ACM (2014) 310–320

6. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
ACM SIGOPS Operating Systems Review 44(2) (2010) 35–40

7. Brewer, E.A.: Towards robust distributed systems. In: PODC. (2000) 7
8. Popa, R.A., Redfield, C., Zeldovich, N., Balakrishnan, H.: CryptDB: Processing

queries on an encrypted database. Communications of the ACM 55(9) (2012)
103–111

9. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Advances in Cryptology–CRYPTO 2013. Springer (2013) 353–373

10. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Ad-
vances in Cryptology-ASIACRYPT 2010. Springer (2010) 577–594

11. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric en-
cryption. In: Proceedings of the 2012 ACM conference on Computer and commu-
nications security, ACM (2012) 965–976

12. Cash, D., Jaeger, J., Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M.C., Steiner,
M.: Dynamic searchable encryption in very large databases: Data structures and
implementation. In: Proceedings of the Network and Distributed System Security
Symposium (NDSS). Volume 14. (2014)

13. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword
ranked search over encrypted cloud data. Parallel and Distributed Systems, IEEE
Transactions on 25(1) (2014) 222–233

14. Wang, B., Yu, S., Lou, W., Hou, Y.T.: Privacy-preserving multi-keyword fuzzy
search over encrypted data in the cloud. In: INFOCOM, 2014 Proceedings IEEE,
IEEE (2014) 2112–2120

15. Boldyreva, A., Chenette, N., ONeill, A.: Order-preserving encryption revisited:
Improved security analysis and alternative solutions. In: Advances in Cryptology–
CRYPTO 2011. Springer (2011) 578–595

16. Kerschbaum, F., Schröpfer, A.: Optimal average-complexity ideal-security order-
preserving encryption. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, ACM (2014) 275–286


